3.2.52 \(\int \cos (c+d x) (a+a \sec (c+d x))^{5/3} \, dx\) [152]

Optimal. Leaf size=86 \[ -\frac {3 \sqrt {2} a F_1\left (\frac {13}{6};\frac {1}{2},2;\frac {19}{6};\frac {1}{2} (1+\sec (c+d x)),1+\sec (c+d x)\right ) (1+\sec (c+d x)) (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{13 d \sqrt {1-\sec (c+d x)}} \]

[Out]

-3/13*a*AppellF1(13/6,2,1/2,19/6,1+sec(d*x+c),1/2+1/2*sec(d*x+c))*(1+sec(d*x+c))*(a+a*sec(d*x+c))^(2/3)*2^(1/2
)*tan(d*x+c)/d/(1-sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3913, 3912, 141} \begin {gather*} -\frac {3 \sqrt {2} a \tan (c+d x) (\sec (c+d x)+1) (a \sec (c+d x)+a)^{2/3} F_1\left (\frac {13}{6};\frac {1}{2},2;\frac {19}{6};\frac {1}{2} (\sec (c+d x)+1),\sec (c+d x)+1\right )}{13 d \sqrt {1-\sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*(a + a*Sec[c + d*x])^(5/3),x]

[Out]

(-3*Sqrt[2]*a*AppellF1[13/6, 1/2, 2, 19/6, (1 + Sec[c + d*x])/2, 1 + Sec[c + d*x]]*(1 + Sec[c + d*x])*(a + a*S
ec[c + d*x])^(2/3)*Tan[c + d*x])/(13*d*Sqrt[1 - Sec[c + d*x]])

Rule 141

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[(b*e - a*f
)^p*((a + b*x)^(m + 1)/(b^(p + 1)*(m + 1)*(b/(b*c - a*d))^n))*AppellF1[m + 1, -n, -p, m + 2, (-d)*((a + b*x)/(
b*c - a*d)), (-f)*((a + b*x)/(b*e - a*f))], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] &&  !IntegerQ[m] &&  !Int
egerQ[n] && IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !(GtQ[d/(d*a - c*b), 0] && SimplerQ[c + d*x, a + b*x])

Rule 3912

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[a^2*d
*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]])), Subst[Int[(d*x)^(n - 1)*((a + b*x)^(m -
 1/2)/Sqrt[a - b*x]), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !In
tegerQ[m] && GtQ[a, 0]

Rule 3913

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[a^Int
Part[m]*((a + b*Csc[e + f*x])^FracPart[m]/(1 + (b/a)*Csc[e + f*x])^FracPart[m]), Int[(1 + (b/a)*Csc[e + f*x])^
m*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] &&  !GtQ
[a, 0]

Rubi steps

\begin {align*} \int \cos (c+d x) (a+a \sec (c+d x))^{5/3} \, dx &=\frac {\left (a (a+a \sec (c+d x))^{2/3}\right ) \int \cos (c+d x) (1+\sec (c+d x))^{5/3} \, dx}{(1+\sec (c+d x))^{2/3}}\\ &=-\frac {\left (a (a+a \sec (c+d x))^{2/3} \tan (c+d x)\right ) \text {Subst}\left (\int \frac {(1+x)^{7/6}}{\sqrt {1-x} x^2} \, dx,x,\sec (c+d x)\right )}{d \sqrt {1-\sec (c+d x)} (1+\sec (c+d x))^{7/6}}\\ &=-\frac {3 \sqrt {2} a F_1\left (\frac {13}{6};\frac {1}{2},2;\frac {19}{6};\frac {1}{2} (1+\sec (c+d x)),1+\sec (c+d x)\right ) (1+\sec (c+d x)) (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{13 d \sqrt {1-\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(2700\) vs. \(2(86)=172\).
time = 16.14, size = 2700, normalized size = 31.40 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[c + d*x]*(a + a*Sec[c + d*x])^(5/3),x]

[Out]

(((1 + Cos[c + d*x])*Sec[c + d*x])^(2/3)*(a*(1 + Sec[c + d*x]))^(5/3)*(Sin[c + d*x] - Tan[(c + d*x)/2]))/(d*(1
 + Sec[c + d*x])^(5/3)) - (2^(2/3)*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(2/3)*(a*(1 + Sec[c + d*x]))^(5/3)*((2*Se
c[(c + d*x)/2]^2*(1 + Sec[c + d*x])^(2/3))/3 + (5*Cos[c + d*x]*Sec[(c + d*x)/2]^2*(1 + Sec[c + d*x])^(2/3))/6)
*Tan[(c + d*x)/2]*(AppellF1[3/2, 2/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*(Cos[c + d*x]*Sec[(c +
d*x)/2]^2)^(2/3)*Tan[(c + d*x)/2]^2 + (243*AppellF1[1/2, 2/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]
*Cos[(c + d*x)/2]^2)/(-9*AppellF1[1/2, 2/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + 2*(3*AppellF1[3
/2, 2/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] - 2*AppellF1[3/2, 5/3, 1, 5/2, Tan[(c + d*x)/2]^2, -
Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2)))/(9*d*(1 + Sec[c + d*x])^(5/3)*(-1/9*(Sec[(c + d*x)/2]^2*(Cos[(c + d
*x)/2]^2*Sec[c + d*x])^(2/3)*(AppellF1[3/2, 2/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*(Cos[c + d*x
]*Sec[(c + d*x)/2]^2)^(2/3)*Tan[(c + d*x)/2]^2 + (243*AppellF1[1/2, 2/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c +
 d*x)/2]^2]*Cos[(c + d*x)/2]^2)/(-9*AppellF1[1/2, 2/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + 2*(3
*AppellF1[3/2, 2/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] - 2*AppellF1[3/2, 5/3, 1, 5/2, Tan[(c + d
*x)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2)))/2^(1/3) - (2^(2/3)*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(2/
3)*Tan[(c + d*x)/2]*(AppellF1[3/2, 2/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*(C
os[c + d*x]*Sec[(c + d*x)/2]^2)^(2/3)*Tan[(c + d*x)/2] + (Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(2/3)*Tan[(c + d*x)
/2]^2*((-3*AppellF1[5/2, 2/3, 2, 7/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x
)/2])/5 + (2*AppellF1[5/2, 5/3, 1, 7/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d
*x)/2])/5) + (2*AppellF1[3/2, 2/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^2*(-(Sec[
(c + d*x)/2]^2*Sin[c + d*x]) + Cos[c + d*x]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(3*(Cos[c + d*x]*Sec[(c + d*
x)/2]^2)^(1/3)) - (243*AppellF1[1/2, 2/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Cos[(c + d*x)/2]*Si
n[(c + d*x)/2])/(-9*AppellF1[1/2, 2/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + 2*(3*AppellF1[3/2, 2
/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] - 2*AppellF1[3/2, 5/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(
c + d*x)/2]^2])*Tan[(c + d*x)/2]^2) + (243*Cos[(c + d*x)/2]^2*(-1/3*(AppellF1[3/2, 2/3, 2, 5/2, Tan[(c + d*x)/
2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]) + (2*AppellF1[3/2, 5/3, 1, 5/2, Tan[(c + d*x)/
2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/9))/(-9*AppellF1[1/2, 2/3, 1, 3/2, Tan[(c + d*
x)/2]^2, -Tan[(c + d*x)/2]^2] + 2*(3*AppellF1[3/2, 2/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] - 2*A
ppellF1[3/2, 5/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2) - (243*AppellF1[1/2, 2
/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Cos[(c + d*x)/2]^2*(2*(3*AppellF1[3/2, 2/3, 2, 5/2, Tan[(
c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] - 2*AppellF1[3/2, 5/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*S
ec[(c + d*x)/2]^2*Tan[(c + d*x)/2] - 9*(-1/3*(AppellF1[3/2, 2/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]
^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]) + (2*AppellF1[3/2, 5/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]
^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/9) + 2*Tan[(c + d*x)/2]^2*(3*((-6*AppellF1[5/2, 2/3, 3, 7/2, Tan[(c +
 d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/5 + (2*AppellF1[5/2, 5/3, 2, 7/2, Tan[(c
 + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/5) - 2*((-3*AppellF1[5/2, 5/3, 2, 7/2,
 Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/5 + AppellF1[5/2, 8/3, 1, 7/2,
Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))))/(-9*AppellF1[1/2, 2/3, 1, 3/2
, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + 2*(3*AppellF1[3/2, 2/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x
)/2]^2] - 2*AppellF1[3/2, 5/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2)^2))/9 - (
2*2^(2/3)*Tan[(c + d*x)/2]*(AppellF1[3/2, 2/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*(Cos[c + d*x]*
Sec[(c + d*x)/2]^2)^(2/3)*Tan[(c + d*x)/2]^2 + (243*AppellF1[1/2, 2/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d
*x)/2]^2]*Cos[(c + d*x)/2]^2)/(-9*AppellF1[1/2, 2/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + 2*(3*A
ppellF1[3/2, 2/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] - 2*AppellF1[3/2, 5/3, 1, 5/2, Tan[(c + d*x
)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2))*(-(Cos[(c + d*x)/2]*Sec[c + d*x]*Sin[(c + d*x)/2]) + Cos[(c
 + d*x)/2]^2*Sec[c + d*x]*Tan[c + d*x]))/(27*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(1/3))))

________________________________________________________________________________________

Maple [F]
time = 0.07, size = 0, normalized size = 0.00 \[\int \cos \left (d x +c \right ) \left (a +a \sec \left (d x +c \right )\right )^{\frac {5}{3}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(a+a*sec(d*x+c))^(5/3),x)

[Out]

int(cos(d*x+c)*(a+a*sec(d*x+c))^(5/3),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(5/3),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^(5/3)*cos(d*x + c), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(5/3),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))**(5/3),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(5/3),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^(5/3)*cos(d*x + c), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \cos \left (c+d\,x\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)*(a + a/cos(c + d*x))^(5/3),x)

[Out]

int(cos(c + d*x)*(a + a/cos(c + d*x))^(5/3), x)

________________________________________________________________________________________